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Abstract. The Bluenome Model of Development is introduced. The Bluenome
model is a developmental model of Artificial Morphogenesis, inspired by bio-
logical development, instantiating a subset of two-dimensional Cellular Auto-
mata. The Bluenome model is cast as a general model, one which generates or-
ganizational topologies for finite sets of component types, assuming only local
interactions between components. Its key feature is that there exists no relation
between genotypic complexity and phenotypic complexity, implying its poten-
tial application in high-dimensional evolutionary problems. Additionally, ge-
nomes from the Bluenome Model are shown to be capable of re-development in
differing environments, retaining many relevant phenotypic properties.

1   Introduction

Typical applications in Evolutionary Computation often involve a direct and simple
relation between genotype and phenotype; Commonly, values from the genome are
simply slotted into a fitness function in a bijective mapping. While this approach is
sufficient for most practitioners, the dimensionality of the solution space (phenotypes)
is directly translated into the dimensionality of the space of genotypes, potentially
exceeding the size of space capable of being searched by a Genetic Algorithm. For
larger and more complex problems direct relations between genotype and phenotype
may be insufficient.

In a field inspired by Biology, it is often useful to re-examine the source: the
human genome may be viewed as a tremendous compression of phenotypic complex-
ity; The approximately 3 billion chemical base pairs of the genome map to approxi-
mately 100 trillion cells [8]. It is clear that the process of development plays a signifi-
cant role in the addition of information to the phenotype; Indeed, models of biology
often attempt to re-create the hierarchical structure inherently formed by the differen-
tiation process, as in [5].

An emerging trend in Evolutionary Computation is to create a (relatively)
small and simple genotype, and to increase the complexity of the phenotype through a
developmental process. The field of Artificial Morphogenesis spans a wide array of
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approaches, varying on a gradient between total information being contained in the
genotype, to a bare minimum, where the genotype is a program designed to spawn the
phenotype. Some approaches use simple techniques, such as the use of repeated
structure when interpreting the genome. Another more complex approach is the use of
Grammars to develop agents, where the grammar and initial conditions form the
genotype. Such systems have enjoyed much success, as in [10], where they were used
in a theoretical experiment to study the development of modular forms, or in [7], who
used the model to develop a neural network controlling a foveating retina. However,
these systems are far separated from their original biological metaphors.

Other equally complex examples include developmental models, inspired by
Embryogenesis. Examples which attempt to model actual biological embryogenesis
have also enjoyed much success, as in the case of the particularly successful modeling
of the embryogenesis of a drosophilae, as found in [6]. In between direct models of
biology and models which are entirely seperated, there exists a class of developmental
models which seeks to abstract the developmental process to high-level systems capa-
ble of artificial evolution, hopefully retaining some of the high-level features of bio-
logical development. Examples include Bentley et al. [1] and Eggenberger [3], who
both propose highly-simplified models which are used to demonstrate the develop-
ment of geometric and aesthetic principles. Perhaps most closely related to the subject
of this paper, however, is work undertaken by Dellaert and Beer [2]; This experiment
aimed at the creation of a computationally-tractable but biologically-defensible model
of development, aimed towards the evolution of agents capable of a locomotive task.
Dellaert and Beer's model consists of a conglomerate of cellular material, which per-
formed a series of divisions and differentiations, controlled by a series of Genetic
Regulatory Networks. Drawbacks to this model resulted chiefly from the size of the
search space associated with their system. For example, they were unable to evolve fit
agents from scratch and hence began their experiments with a hand-coded agent, from
there obtaining results, and again later by simplifying their model. As is noted in a
review by Stanley and Miikulainen, simpler solutions may outperform biologically
plausible ones, and a need exists for abstraction [12].

This viewpoint, that of increasing the complexity of the phenotype through
the developmental process, forms an interesting starting point for another emerging
line of thought: It has been postulated (most notably by Wolfram [13]) that natural
selection serves not to increase the complexity of agents through time, but instead to
limit the complexity inherent in a complex and unwieldy developmental process. If
this suspicion is correct, then the current typical use of Evolutionary Computation may
not utilize the metaphor of natural selection to its fullest potential.

In this paper, we present the Bluenome1 model of development. Bluenome is
a highly abstracted model for developing application-neutral agents composed of an
arbitrarily large network of components chosen from a finite set of types. Bluenome
uses a subset of the space of two-dimensional CAs, evolved in a genetic algorithm,
starting from a single neutral cell. Ideally, Bluenome is designed to recover both the
inherent structure associated with developed organisms, and also the unwieldy com-
plexity found in Cellular Automata.

                                                          
1 Genome as a blueprint for development.
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2   The Bluenome Model2

The Bluenome Developmental Model is a highly simplified version of biological
embryogenesis. It involves the inclusion of a single component (Cell) into an array of
spaces (Grid Cells), and a methodology for that cell to grow into an agent, utilizing
only local information. The Cell contains a single piece of DNA, which it interprets to
decide its next action - the complexity of a piece of DNA is governed by a system
parameter, numRules, which limits its precision. The number of possible cells is gov-
erned by a system parameter, numColours, the number of types of components which
might be included in an agent. This process is limited by a system parameter numTel
(number of telomeres), which acts as a counter in each cell, decrementing with each
action that a cell undertakes.

An agent’s genome is comprised of a series of numRules rules, numRules ∈
N+. Each rule is (numColours+2) integers long, leading to a total genome length of

(numColours+2)*numRules. Each rule is structured as:
colour hormone1 … hormonenumColours action

where colour ∈ [1,numColours], hormonei ∈ [1,12], and action ∈ [1,numColours+3].
Initially, an agent begins as a single neutral cell, centred in an environment (a

square matrix of Grid Cells). When activated, a cell (currCell) in the environment will
collect hormones from its twelve neighbourhood, storing the number of occurrences of
each cell colour in a list. The exception is in the case of cells on the periphery; These
cells are only included in the count if the cells in between are empty3 – hence the cell
on the far, far left will be included in the count only if the cell on the left is empty.
What results is a list of numbers of length numColours, each of value between zero
and twelve.

Once any particular cell has collected information regarding its neighbours, it
searches the genome to find the closest matching rule: First, it collects all rules in the
genome such that the current colour of the cell and the first argument in the rule match
(If no such rule is found, the cell takes no further action this time step). Next, it
searches that collection of rules for the one most closely matching its list of current
hormone levels (Euclidean distance). Finally, the action is extracted from that rule.
The action is executed by first decrementing the cell’s internal telomere counter
(hence a cell may execute only numTel actions), then executing the action corre-
sponding to theRuleaction. Possible actions include: Die, where a cell is removed, leav-
ing an empty Grid Cell; Specialize(colour), where a cell changes its colour to colour;
Divide, where a copy of the cell is placed in the best free location; and Move, where
the cell is relocated to the best free location (if there are no free locations, no action is
taken). It should be noted that the best free location is defined as the Grid Cell in
currCell’s four-neighbourhood furthest away from the largest mass of cells in the
eight-neighbourhood. In the case of equal distribution, the best free location includes a
directional bias – left, then counter-clockwise.

                                                          
2 For brevity, technical details involving algorithms and parameters have been omitted. The

interested reader is urged to consult [9].
3 To model the difference between contact-dependent and diffusible communication [4].
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In this manner, a “good” genome will allow a single initial cell to grow to a
robust agent. The process terminates when all telomeres are expended, or when there
is no change from one developmental time step to the next. No other mechanisms are
included – there are no special parameters for symmetry breaking, beyond that inher-
ent in the directional bias.

One view of this process is as a subset of all 2-dimentional Cellular Auto-
mata with radius 3. The key differences between CAs and Bluenome are: (1) Blue-
nome begins with a single cell in the centre of a finite grid. Empty (white) cells cannot
change their colour without a non-white neighbour4; (2) As the hormone collection
process does not note direction, the rules instantiated by the Bluenome genome map to
symmetrical patterns in a CA rule set; (3) Bluenome utilizes a measure to compute
distance to a rule, unlike CAs, which are precise. This may be viewed as collapsing
several similar rules into a single outcome; and (4) The lack of consideration of pe-
ripheral cells in the twelve-neighbourhood may be viewed as a further grouping of CA
rules.

Fig. 2.1 shows the development of an interesting agent taken from Phase
One, shown at various times in the development. An unfortunate point is that the ma-
jority of genotypes generate trivial agents – nearly 80% of random samples. However,
it will be shown that selection quickly improves matters.

Fig. 2.1. Development of an interesting agent.

We can now make some estimates involving size: Firstly, we note that the maximum
size of an agent with numTel telomeres will be 2*(numTel+1)2 – this is the size of a
diamond with sides of length (numTel+1). Hence, an agent with numTel = 6 will have
a maximum phenotypic size of 98 cells; 882 cells for an agent with numTel = 20. In
contrast, and agent with numColours = 5 and numRules = 25 will have a genotypic
size of 175, regardless of phenotypic size. The complexity of the developmental proc-
ess is O(numTel3*numRules).

3   Phase One: Application-Neutral Experiments

The evolution of cellular automata is a notoriously difficult problem: the highly non-
linear nature of the space of CAs, as well as the unpredictability of the forecasting
problem [15], [13] makes the prospect of the evolution of complex patterns using GAs
seem grim. As we have recognized the Bluenome model as a subset of the space of

                                                          
4 Similar to a Totalistic CA [15].
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two-dimensional CAs, it is not obvious that evolution is possible in any reasonable
measure of time. Phase One was a set of experiments utilizing an array of fitness
functions to determine which high-level axis could potentially be evolved.

Phase one utilized a neutral view of phenotypes – an organism was treated as
an image, fitness function being based on techniques from Image Processing. In all
cases, grids of size 100x100 were used, and the agents were allowed to grow to fit the
grid. A genetic algorithm was used to evolve phenotypes, typically running for 100
generations with a population size of 30.

Successful experiments showed promising results; Typically, highly fit
population members were discovered prior to generation 100, with steady increase in
mean fitness. These fitness functions included: selection for complexity, selection for
similar but disconnected regions, selection for highly distinctive regions, and selection
for a transport system.

An example of one such successful run was the attempt to generate images of
increasing complexity. Here, fitness was a function of the size of the grown agent and
the number of different cell types included in the phenotype. By generation 100 a
robust agent utilizing all colours can be seen. Members of the population can be seen
in Fig. 3.1. From generation 100 of this same experiment.

Fig. 3.1. Images from a Phase One experiment using complexity as a fitness. Members are
shown from generations 0, 10, 40 and 100.

Fig. 3.2 shows a set of exemplar members chosen from the various experi-
ments. In all cases, these members were found in less than 100 generations of evolu-
tion, utilizing population sizes of less than 30.

Fig. 3.2. Exemplar members from Phase One experiments, identified by generating fitness: (far
left) maximal thin coverage; (left) disconnected regions of similarity; (right) disconnected
regions of similarity; (far right) highly distinctive regions.

Another interesting result from Phase One was the attempt to re-grow a
genotype in differing environments. This attempt is illustrated in Fig. 3.3, where again
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visual similarities may be seen most clearly, Additionally, under the fitness used in the
experiment (the complexity function), fitness was nearly identical for each re-growth.

Fig. 3.3. The same genotype re-
grown in differing environments.
(left) original phenotype; (centre)
environment with non-interacting
foreign cells (black); (right) envi-
ronment of double the size.

4   Phase Two: Application to an Artificial Problem

The goal of the experiments in Phase Two is the evolution of multi-cellular agents,
capable of surviving as long as possible in an artificial world. The artificial agents are
presented; An agent is a collection of cells, each with a defined behavior. These cells
are laid out (connected) in a matrix of Grid Cells, and provided with an amount of
food initially, a cell using one unit of food per discrete time step. Also in this envi-
ronment are laid out patches of food; To survive longer, an agent must detect this
food, move over top of it, absorb it, and distribute it to the remainder of cells in its
body. All cells are capable of local interactions only – a cell communicates or passes
food only in its local neighbourhood.

Additionally, a second model of development is presented, one in which the
relation between genotype and phenotype is bijective. The purpose of this inclusion is
to demonstrate that a developmental model may outperform a bijective model.

Worlds: A world is an infinite two-dimensional matrix of Grid Cells. Each
world contains one agent at the centre, and a distribution of food. There are no colli-
sions - instead, an agent will pass directly over top of food in the world, possibly ab-
sorbing it. Food is parceled in food pieces, each occupying one Grid Cell, having a
value of 2*(numTel+1)2 food units. Food is distributed differently, depending on
world type. Distances between the agent’s starting point and the food batches varies
between low and high phenotypic complexity runs, the former being placed closer.

Type 0 worlds contain eight batches of food, laid out in a circle surrounding
the agent. Type 1 worlds consist of a line of four patches of food, these patches being
placed in successively longer distances in one direction. Type 2 worlds consist of four
patches of food placed in random locations, slightly farther away than the range of
vision of the closest possible eye cell. Type 3 worlds consist of 40 small batches of
food distributed randomly in a donut shape surrounding the agent.

Agents: An agent is a collection of one or more cells, assumed to be con-
nected. Each cell occupies one grid location. Agents behave as the sum of the behav-
iours of their cells. So long as one cell is declared "active", an agent is declared "ac-
tive" - otherwise "inactive".

Cells may be viewed as independent agents of their own right - each main-
tains a food supply, and executes a particular program based on input and internal
variables. Cells may communicate and pass food between adjacent cells (four or eight-
neighbourhoods). A cell is "active" (coloured) if its food supply is greater than zero,
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otherwise "inactive" (black). An inactive cell will continue to occupy physical space,
but will no longer be capable of processing input or output or absorbing food. All cells
belong to one of the following classes: Eyes (Green), Nerves (Orange), Feet (Blue),
Transports (Red) and Structure Cells (Gray).

Eyes: Eye cells can sense their external environment, and return a boolean
value on the basis of the existence of food. However, the presence of other cells within
its field of vision will block its ability to sense.

Nerves: Nerves are cells, which accept information from neighbouring eye or
nerve cells, with  up to four inputs, four outputs, or any combination thereof, deter-
mined by connections to eye cells. Nerves output the sum (identity nerves), the nega-
tive of the sum (inverse nerves), or the sum plus a random value from {-1, 0, 1} (ran-
dom nerves).

Feet: Foot cells accept input from all neighbouring nerve cells. Following all
other computation, an agent sums the motion of each foot, and moves accordingly
(weighted by total size of agent). Forward foot cells move forward (backward for
negative input), and rotation foot cells rotate counter-clockwise (clockwise).

Transports: Transport cells manage the collection and distribution of food. At
each time step, a transport cell will: collect food from its environment, and pass food
to all neighbours in the eight-neighbourhood.

An Agent in the World: An agent is initialized in the centre of a world, each
cell containing 200 units of food, with time defined as zero5. The agent next executes
the following process at every time step, considering only active cells:

1. Replace any cells with no food with inactive cells (black, in the GUI)
2. Each transport cell collects any food from the environment
3. Each transport cell passes food to its neighbours
4. Compute the depth of each nerve cell, where a nerve has depth 1 if it

is connected to an eye cell, 2 if it is connected to a nerve connected to
an eye, etc. Random nerve cells which are not connected to an eye cell
are also labeled depth one.

5. Eye cells are activated, returning 1 if food is within field of vision.
6. All nerve cells of depth one collect input and compute output, con-

tinue for each successive depth
7. Each foot cell collects input, adding output to the total
8. The agent moves accordingly.

Fig. 4.1 is an illustration of perhaps the simplest agents capable of finding and ab-
sorbing food. As a curiosity, consider Fig. 4.2, an agent in a similar situation; This

agent’s actions would cancel each other out, leading to immobility.6

Fig. 4.1. One of the simplest agents capable of finding and absorbing food

                                                          
5 Hence, if an agent does not find food, all cells will die at time 200; Typically, most cells do,

as most agents have imperfect methods for food distribution.
6 Schopenhauer, eat your heart out.
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Fig. 4.2. An immobile agent

Development: Two methods of development are used: the Bluenome method,
as introduced in section 2, and a Bijective method. The bijective method of agent
development is a simple model, in which there exists a one-to-one correspondence
between elements in the genome, and cells present in the agent. The genome for an
agent consists of an array of integer values, all between 0 and 9, inclusively. A bijec-
tive agent is developed by laying out the values of those integers one by one, in a
spiral pattern, eventually forming a diamond of area 2*(numTel+1)2 – hence, an agent
with numTel = 6 will have at most a genotypic and phenotypic complexity of 98; With
numTel = 20, a complexity of 882.  The genome values are mapped to cell types,
where the 0 value is mapped to the empty cell. The spiral layout begins with the cen-
tral point, and proceeds biased downwards and clock-wise.

Fitness: The base fitness of an agent in the world is a measure of its size and
length of life, relative to a world w.

fitnessbase(a) W = Σt numCells(a,t) (1)
where numCells(a,t) is the number of living cells in agent a at time t. Note: since the
amount of food in a world is finite, so is fitnessbase.

To help the Bluenome model overcome the development of trivial agents, we
introduce a bonus to fitness (for both Bluenome and bijective versions). We define
numClasses ∈ [4] to be the number of those classes for which at least one cell exists in
the fully developed agent.

fitnessbonus(a) = numClasses (a)2*20*(numTel+1)2 (2)
Finally, our fitness function is:

fitness(a) W = fitnessbase(a) W + fitnessbonus (a) (3)
In any particular generation, an agent a will be subjected to two worlds, w1 and w2.,
chosen at random (our fitness is stochastic):

fitness(a) = fitness(a) W1 + fitness(a) W2 (4)
Experiments: Evaluation of the Bluenome system involves a series of ex-

periments, differentiated by the model for growth (Bluenome versus Bijective, or bn
versus bj), and also by value of numTel. The experiments consisted of one run of each
the Bluenome and Bijective systems for numTel ε {6, 8, 10, 12} (low phenotypic com-

plexity). Additionally, there were three runs for each of the Bluenome and Bijective
systems with numTel = 20; (high phenotypic complexity).

5   Data and Analysis

Data for the low phenotypic complexity runs (numTel ε {6, 8, 10, 12}) showed little

variance between values of numTel; Hence, only data for the numTel = 6 runs are
shown.
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In the low phenotypic complexity runs, the bijective runs outperform sub-
stantially, as illustrated in Fig. 5.1. Also, Figure 5.2 shows a comparison between
maximum time for the numTel = 6 runs – the bijective version typically outperforms
the Bluenome version. Contrary to initial expectations, this is not a boon, but instead a
drawback. The primary failing of the bijective method is its inability to generate an
adequate transport system for distributing food throughout its body. The successes of
the bijective model typically involve small groups of cells hoarding food, while no
new food is found following time step 200.

Fig. 5.1. Maximum fitness of the Bluenome
versus the Bijective run for numTel = 6. The
Bijective run clearly outperforms initially;
While the Bluenome run catches up in later
generations, it never reaches the same levels.

Fig. 5.2. Maximum time (of the most fit
agent) plot for the Bluenome versus the Bi-
jective run, with numTel = 6. The Bluenome
version clearly shows a lower maximum time
consistently.

Fig. 5.3. Maximum Fitness plots for three of
each of the Bluenome and Bijective runs,
with numTel = 20. The Bijective runs (light
lines) outperform initially, but two of the
Bluenome runs (dark lines) catch up by gen-
eration 150. One run can be seen overtaking
the Bijective runs, beginning with generation
70.

Fig. 5.4. Time / Fitness plots (of the most fit
agent) of three Bluenome runs (dark lines) ver-
sus the Bijective runs (light lines). The Blue-
nome runs are clearly higher consistently.
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Fig. 5.3 show the fitness plots of the numTel = 20 runs. In these runs, a dif-
ferent trend is seen; Here, the bijective runs all follow a similar course. They begin
with some visible evolution, until they reach maximum fitness values in a range of
about 720 000 to 850 000 (in all cases prior to generation 100), where they appear to
oscillate between values randomly; It appears that the complexity of the space in-
volved exceeds the GAs ability to improve. The lowest of the Bluenome runs shows a
similar course to the bijective runs, with some initial evolution and a seemingly ran-
dom cycling of values following. However, the other two Bluenome plots show a
continuous evolution proceeding up to generation 200, potentially continuing beyond
this point. Additionally, the highest run quickly shows consistent maximum fitness
values, which exceed the maximum, found in any of the bijective runs. Figure 5.4
clearly shows the continuation of the fitness / time trend – the Bluenome models
clearly distribute food between body components more evenly.

An interesting and important property determined from Phase One was that
of the Bluenome Model’s resistance to changes in environment with respect to agent
growth. In Phase Two, an experiment was undertaken which tested a similar situation
– that of the re-use of an agent’s genome in a differing setting. Populations of ge-
nomes were selected from a high-phenotypic complexity run (numTel = 20) at a pe-
riod late in evolution (generation 180). These genomes were re-developed, this time
using a value of numTel = 8, rather than 20. The developed agents were evaluated as
normal in the numTel = 8 context (that is, using the lower distances for food locations
in the worlds). The values obtained are comparable to the numTel = 8 run. In Table
5.1, maximum and mean fitness values are compared between the re-grown agents and
a late population from the numTel = 8 run. While the original population outperforms
the re-grown agents slightly, the mean and maximum fitnesses of the re-grown agents
are comparable to those found in the later stages. Fig. 5.5 shows the first agent of the
numTel = 20 run grown with numTel = 8, 20; Visual similarities between the two are
immediately visible, and both agents are members of the “Position-then-Rotate Strat-
egy” family of agents (see below).

Table 5.1.  Maximum and Mean fitness values from re-grown agents

mean fitness maximum fitness
original numTel = 8 pop., generation 94 75 252.67 126 364

re-grown agents, mean over three evaluations 73 211.06 119 344

Fig. 5.5. An agent from a run with numTel = 20, genera-
tion 180 (left), re-grown having changes the value of
numTel to 8 (below).

It has been noted that Phase Two presents an artificial problem for which
human designers would experience difficulty; Three (of many) identified agent strate-
gies are presented in the following figures: Fig. 5.6 illustrates a member of the blind-
back-and-forth strategy: This strategy may be viewed as a local optimum which often
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dominates early generations. These agents typically do not include eye or rotation foot
cells, relying instead solely on random nerves and forward cells, moving back and
forth on the x-axis. This strategy works marginally well for worlds of type 0 and 3, but
rarely for other worlds; Fig. 5.7 illustrates a member of the rotate-then-forward strat-
egy, perhaps the most successful strategy found - The agent rotates randomly, until it
sees food, then moves forward; Fig. 5.8 illustrates a member of the position-then-
rotate strategy, another local optimum: initially the agent moves forward, until it is at
the same distance as the first batch of food. Then, it begins to trace a constant circular
path – this strategy works poorly on most worlds, except on type zero, where it may be
a global optimum.

Fig. 5.6. Example of the Blind Back-and-Forth Strategy. The dark blue cells
are Forward Foot cells, the mid-orange cells Random Nerve cells. The agent
contains no Eye of Rotating Foot cells whatsoever, save a single Eye cell
near the centre (its location guarantees it will never fire). The single Eye cell
is included probably for the sole reason of maximizing fitnessbonus

Fig. 5.7. An example of the Rotate-then-Forward Strategy. There are two
Eye cells on the periphery of the agent – centre left and upper right. These
cells are somewhat buried, guaranteeing a narrow focus, and are connected
through a large series of Identity Nerve cells to Forward Foot cells. In the
centre of the agent are many Random Nerve cells, connected to Rotation
Foot cells, providing the random rotation.

Fig. 5.8. Example of the Position-then-Rotate strategy. The agent has Eye
cells connected to Forward Foot cells on both the left and right hand side,
with more Forward foot cells on the left. Towards the centre of the agent, a
series of Random Nerves connect to Rotation Foot cells.

6   Conclusions

In Phase One, several fitness functions were used to evolve images demonstrating
suggestive principles. In nearly all cases, successful evolution was achieved quickly,
generating images recovering some of the complexity of two-dimensional CAs.

In Phase Two, the Bluenome model was applied to a non-trivial artificial
problem, one which involved the coordination of many non-linearly interacting com-
ponents. In cases of low phenotypic complexity, the bijective methodology tended to
outperform the Bluenome method, with a wide margin in initial generations, barely so
in later generations. In cases of high phenotypic complexity, however, one of the
Bluenome runs clearly outperformed all of the bijective runs, with a second matching
with potential for further growth in later generations. The Bluenome methodology
continued to develop in a high-dimensional space, while the bijective methodology
stagnated early on.

In addition to this performance increase in high complexity runs, the Blue-
nome model showed an inherent ability to generate agents with better developed sys-
tems for the distribution of food throughout the body – this is no doubt a result of the
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inheritance of cell specialization creating a network of transport cells, a readily ob-
served instance of the sorts of structural patterns inherent to the developmental proc-
ess [5]. Finally, the resistance of the developmental process to changes in the envi-
ronment was demonstrated. More intriguing still is the continuation of performance by
the re-developed agents, both in terms of valuation by the fitness function in question,
and in visual appearance.

A matter touched upon in the above discussions is the view of evolution as a
mechanism for controlling complex processes; Indeed, this is an intriguing hypothesis,
perhaps contributing to the success of the above system; If true, however, it begs an
obvious question: by what mechanism? It is the hope of the authors that systems like
Bluenome may serve as a test bed by which this claim may be evaluated and studied
further.
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